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Equation of state of the hard-sphere solid: The modified weighted-density approximation
with a static solid reference state
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We have investigated the high-density hard-sphere solid through density-functional theory by applying our
recent formulation of the modified weighted-density approximatigiwDA) with a static solid reference
state. Our model utilizes both information about the fluid state, modeled by the Percus-Yevick approximation,
as well as physical insight into the static solid. We find very good agreement with computer simulation data for
the equation of state, as well as for the ideal and excess components of the pressure, and are able to improve
the results from the original MWDA model over a wide range of packing fractions. The degree of particle
localization and the value of the Lindemann parameter for the high-density hard-sphere solid are also improved
over the original MWDA theory. Finally, we comment on the result that the excess pressure is negative for
most packing fractions, suggesting possible physical means for this obsery&tl@63-651X99)07904-0

PACS numbdss): 05.70.Ce, 05.26-y

In the 20 years since Ramakrishnan and Yussouff's pio- In density-functional theory, the total Helmholtz free en-
neering work on the applications of density functional theoryergy is taken to be a functional of the local density) and
to classical systemfl], it has been widely used to analyze is generally decomposed into ideal and excess components:
the thermodynamics of crystallization, the structure of the
solid-liquid interface, the process of nucleation, the presence FLp]=Figeal P]1+ Fexceskp ], 1
of defects in a crystdP], and details of the hard sphere solid . . .
[3-5]. A decade ago, Denton and Ashcroft introduced a for—Where the ideal component is known exacily:
mulation of density-functional theory, the modified
weighted-density approximatigMWDA ), to study the crys- Figeal p1= ka dr p(r){In[A3p(r)]—1}, 2
tallization of simple fluid§6]. Four years ago, Denton, Ash-
croft, and Curtin applied the MWDA to study the thermody- \yhere k is Boltzmann’s constant and is the de Broglie

namic and structural properties of the high-density hardyayvelength. To approximate the excess free energy in the

sphere solid3]. They obtained the equation of state for the MmwDA model, Denton and Ashcroft assumed that it pos-

face-centered cubigfcc) hard-sphere solid for packing frac- sessed the form

tions up to 0.71, although the results deteriorate at densities

or packing fractions near close packing. Fexceskp1=NT(p) 3
Recently, we proposed a revised version of the MWDA

theory that corrected many of the problems of the originawhere N is the number of particles anf(p) is the local

theory when it was applied to the crystallization of the classexcess free energy of the fluid phase evaluated at a spatially

of inversenth power fluids, where the intermolecular poten- invariant weighted density. This weighted, or coarse-

tial is given by U=4e(o/r)" [7]. The essence of our ap- gra_mec_j, densn_y is that of_ bqwd that_ accurately models a

proach is to incorporate physical information about the stati€0lid with densityps, and is in turn given by

solid into the original density-functional theory model based 1

upon the fluid state. Motivated by our belief that an accurate — _J J' .

model of high-density solids near close packing requires the PTN drap(ry) | drap(rz)w(rs,raip), @

incorporation of static solid properties, we have applied our

theory to the equation of state of the high-density hardwherew(ry,r,;p) is a weighting function. The weighting

sphere solid. function is chosen such that the free energy and the two-
The purpose of this paper is twofold. First, we show thatparticle direct correlation functios(r,,r,;p) are exact in

our approach yields highly accurate equation of state data, 48€ uniform liquid limit via the relationship

well as structural information in terms of localization param-

eters, for the hard-sphere fcc solid at higher packing fractions o 6°F exceshp]

than were obtained befof8—5]. Our second aim is to dem- crurzilp)=-8 Sp(ry)dp(ry)’ ©

onstrate that our model can correct some of the problems

which have plagued the original MWDA model at densitieswhereg=1/kT. Thus, the MWDA mode(as with almost alll

higher than coexistend@]. density-functional theories to datean be regarded as a

fluid-based theory, with the quality of its results dependent
on its ability to accurately extrapolate information about the
* Author to whom correspondence should be addressed. solid from the fluid state.
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In most density-functional theories, the solid density isrately models the range and magnitude of correlations in the

givena priori by a Gaussian parametrization solid [2,12]. To ameliorate this shortcoming, we decided to
3 retain the form of the weighted density given in E§), but
™ to generalize the Ornstein-Zernicke equation
p(N=|—] X exp(—alr=R[?) ® 9 q
where the sum is taken over real lattice vectys depen- C(rlz):h(rlz)_pf c(rig)h(rz3)drs, (1)

dent upon the particular crystal structure, ands an order ) ) )
parameter that can range from 0 for a liquid with uniformWhere nowp is a new weighted density that can vary the
density tox for a static solid possessing a sumsgflunctions stren_g.th. of t_he corre_latlons presentin .the system. Itis c_hosen
density profile. Computer simulation results indicate that the?y utilizing information about the static solide., the solid
Gaussian parametrization is an excellent approximation ggorresponding tay=c°):

high densitied9,10]. In Fourier space, Eq6) can be ex-

pressed as P_ PP (12
P Ps™ Pstatic
p(r)=ps+ ; Pk, expliki-r), (1) wher€pgaicis the MWDA weighted density that would yield

a free energy equal to the exact free energy of the static
where the sum is now over reciprocal lattice vectqrsFor ~ S0lid, andp.. is the MWDA weighted density obtained from

the largea (ao®>50) values typically found in solids, the the o= limit of Eq. (9) [7]. Thus Eq.(12) is a measure of

ideal free energyEq. (2)] can be approximated 48 the relative error in the MWDA prediction of the static solid
OyEa. ()] i 48] free energy. In summary, we solve H®), with the direct

5 correlation function given by Eql11) and p given by Eq.
+3In(A) - 3. ® (12.
In addition to free energies of the solid state, pressures,
Combining Egs.(4)—(7) with the application of the uni- and hence equations o'f state, can also be obtained through
form liquid conditions yields a simple algebraic relationship Standard thermodynamic identities:
for the weighted density: Bp pr

_ 1 ) p P
p(ps,@)=ps 1—W exp(—k“2a)c(k;p) | -
P)k#0 Also, as Denton, Ashcroft, and Curtin have pointed (@]t

©) the identification of ideal and excess pressures can also be

The two particle direct correlation function in the equation™ade:
above is generally evaluated by solving the Ornstein-

a
aw

3
BFideaIZE In

(13

Zemicke equation PPigeal o Migear_ 3p It (143
p ap 2a dp’
c(ri=h(ryy) - Pf c(righ(ra)drs, (10 BPexcess If excess I excessdp (14b)
b Br—; b Bp i dp’

where r,=|r;—r,|, with an appropriate closure relation-
ship. For the hard-sphere system, analytical forms of the diThese are the pressure analogs of the configuratigaed)
rect correlation function are available via the Percus-Yevickand conformationajexcess free energie$2].
closure, which is accurate for densities less tpari=0.7, Hard spheres are an ideal system for studying the high-
where ¢ is the hard-sphere diameter. Equati® is then  density solid. From a theoretical point of view, the hard
solved iteratively and self-consistently to evaluate thesphere is the simplest of all systems other than the trivial
weighted density. ideal gas, but is known to give a qualitatively accurate pic-
After the weighted density is found, the excess and totature of real fluids. It often serves as the reference state
free energies can be calculated as a function of the localizaround which perturbation schemes are performed. Also,
tion parameter. At each solid density, a minimum in the while many density-functional theory schemes have yielded
total free energy curve for a nonzesovalue corresponds to good results for the hard-sphere solid, including at higher
a stable solid in the MWDA theory. More detailed informa- densitieg4,5], that is not the case with the MWDA theory.
tion about the MWDA theory, its interpretation, and its con- Yet, unlike these other models, the MWDA theory has been
nection with the closely related WDA theory, can be foundapplied with much greater success to other systems, includ-
in several other papef2-3,6—7,11 ing soft spheref7,12]. Thus extending the MWDA theory to
Originally, the MWDA theory was applied to study the the high-density hard-sphere solid would be theoretically ap-
fluid-solid freezing transition. It yielded excellent results for pealing. Practically, simulation data are available for hard
the hard-sphere fluid-fcc solid transition, but the resultsspheres, even at high densities. Finally, the analytical solu-
worsened(sometimes to the point of failurdor potentials tion of the Percus-Yevick closure to the Ornstein-Zernicke
having longer range or attraction and for systems freezingquation facilitates the computational aspects of the analysis.
into body-centered cubitbco) solids. The traditional expla- Under the Percus-YevickY) (compressibility approxima-
nation for these failures was that the MWDA theory inaccu-tion, the free energy is given by:
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3
fPY(ﬂ):E

1
=77 —1) —In(1-7), (19

where = (m/6)pa? is the dimensionless packing fraction, while the direct correlation function is:
447 . b .
c(k;n)= & a(y cosy—siny) + 67;§(y2 cosy—2y siny—2 cosy+2)

a
+ n?(y4 cosy —4y® siny — 12y? cosy + 24y siny + 24 cosy — 24) |, (16)

N[ -

where a=(1+2%)%(1—»n)* b=—(1+5/2)%(1- 5%, [3,5,9,15-18 It is remarkable that our model incorporating
andy=ko [13,14. the static reference statMWDA-SRS) agrees with com-
Figure Xa) shows the equation of state results derivedputer simulations for packing fractions in excess of 0.72,
from our theory via Eq(13) compared with those of Denton, within 3% of the close-packing value of 0.74 for the fcc
Ashcroft, and Curtin [3], and computer simulations solid. At packing fractions below 0.65, the original MWDA
model gives excellent predictions, only very slightly under-
120 ' ' ' ' ' estimating the total pressure. Above a packing fraction of
' 0.65, the MWDA theory overpredicts the total pressure, with
;' the discrepancy becoming significant above 0(@8thin
. about 10% of close packinglt should be noted that while

sof our pressure results are better than those of the original
MWDA model for the high-density hard-sphere solid, our
oo} ) ; MWDA-SRS formulation slightly worsens the coexisting
densities at equilibrium for the hard sphere fluid fcc solid
phase transition, as discussed in R&i.

Parametrizing the free energies with a cubic polynomial
and applying Eq(14), we determined the components of the
pressurdwe also checked that the two components summed
. . . . ‘ to the total pressure within a small margin of ejrdfigure
0.45 05 0.5 06 0.65 07 075 1(b) shows the ideal and excess pressures from the MWDA-
SRS model, the original MWDA model, and computer simu-
lation data. As with the original MWDA theory, our formu-
lation yields ideal and excess pressures in good agreement
with computer simulation results at low to moderate packing
fractions. Also in agreement with Denton, Ashcroft, and Cur-
tin are the observations that the ideal pressure far exceeds the
excess pressure at most densities and the existenuegef
tive excess pressures. This contrasts with a recent model pro-
posed by Rosenfeld, where the excess pressure makes the
dominant(and always positivecontribution to the total pres-
sure[19]. However, the MWDA-SRS model produces far
lower excess pressures at high packing fractions than found
in the original MWDA study[3]. On the other hand, our
results for the excess and ideal pressures are in general
agreement with those of Tejero, Ripoll, and Perez, who uti-

Bp/p
401

20

Bp/p

oz o5 05 068 o7 lized real space versions of density-functional theory to
study the hard-sphere solid], as well as Rascon, Mederos,
(b) n and Navascues, who studied the Tarazona free energy func-

tional approach with a parametrization of the pair correlation

FIG. 1. (a) Total compressibility factor or dimensionless pres- . ) . ;
@ P Y P function obtained from Monte Carlo simulatioffs].

sure (Bp/p) vs packing fraction(n) for the MWDA-SRS model . -
(solid line), the original MWDA modeldashed ling and computer To study the differences between our model, the original

simulation data*). (b) Ideal compressibility factor#pigea/p) vs ~ MWDA model, and computer simulation results in greater
packing fraction() for the MWDA-SRS modelO), the original detail, we analyzed the localization of particles through the
MWDA model (+), and computer simulation datsolid line). Ex- parameterr for the solid phase at various packing fractions.
cess compressibility factorpecesd p) VS packing fractior(z) for  In Fig. 2 we plot In@a®) as a function of packing fraction for
the MWDA-SRS modelO), the original MWDA model(*), and  the three approaches. At packing fractions below 0.65, the
computer simulation datésolid line). original MWDA model overpredicts the value ef resulting
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FIG. 2. In(@d® vs packing fraction() for the MWDA-SRS
model (+), the original MWDA model(O), and computer simula-
tion data(*).

FIG. 3. Bp/p vs 7/ 5, for the free volume modefsolid line)
and the MWDA-SRS mod€gO).

in slightly smallerideal and total pressures via Eql4g  original MWDA formulation at low packing fractions, but a
compared with computer simulations and this study. Atsmaller Lindemann value at high packing fractions as a di-
higher packing fractions, the overprediction of theessind  rect consequence of the variation @fvalues with packing
total pressures by the MWDA theory compared with com-fraction.
puter simulations could be caused at least in part by its un- For the equilibrium solid with a packing fraction of 0.545
derprediction ofa values, as discussed below. Our model(po®=1.04), our model predicts a Lindemann value of 0.12,
indicates highew values for the hard sphere solids at high Very close to the computer simulation value. It is well known
packing fractiongabove»=0.69) compared with the origi- that the original MWDA theory, as with most density-
nal MWDA theory. The value of should diverge toc atthe ~ functional theories, underpredicts Lindemann parameter val-
close-packing fraction of 0.74, as the particles in the systeriies for various equilibrium solids with different intermolecu-
become perfectly localized; at a packing fraction of 0.72, oufar potentials. It should also be noted that below a packing
model already predicts a very large valuemfn excess of fraction of approximately 0.52, the hard-sphere solid be-
12 000. comes unstable relative to the fluid. At this packing fraction,
In order to determine the close-packing limit predicted bywe find a Lindemann ratio of slightly over 0.13, in reason-
the MWDA-SRS model, we compared it to the free volumeable agreement with the phenomenological Lindemann rule
theory, a model that is accurate for high packing fractionsstating that the fluid-solid phase transition occurs when this

[3]. According to this theory, the pressure is given by ratio reaches 0.15. For a metastable solid with a packing
fraction of between 0.48 and 0.52, our model indicates that

Bp 1 the mean square displacement is roughly 15-20% of the
P (17)  average lattice spacing.
1— (-) In Fig. 4 we plot the dimensionless weighted density from
Mep the MWDA-SRS model, the original MWDA model, and the

and diverges at close packingg,. As shown in Fig. 3, a

value of 5.,=0.742 yields similar pressure divergence be-
haviors for both the MWDA-SRS and free volume models as
! nep @pproaches unity. This predicted value of close pack-,
ing is virtually exact for the fcc solid.

TABLE I. Lindemann ratio for the MWDA-SRS model and the
original MWDA model at various packing fractions).

L (MWDA static reference L (MWDA original)

Table | lists the values of the Lindemann parameter td?-48 0.19 0.14
quantify the localization of particles in the solid phase. The0.50 0.15 0.13
Lindemann parameter is defined as the ratio of the meaf.52 0.13 0.11
square displacement of a particle from its lattice site to theé).54 0.12 0.10
average intermolecular spacing in the sdl&D]. For a fcc  0.56 0.11 0.089
solid with a Gaussian density profile of E¢6) and(7), itis  0.58 0.090 0.079
given by 0.60 0.074 0.069

1/ "™ s 0.62 0.063 0.059

=D :(i) (3_77 19 064 0.051 0.049

d ac?| \2m| 0.66 0.041 0.040

0.68 0.030 0.031

whered is the average interparticle spacing as measured bey.70 0.021 0.023
tween two nearest-neighbor lattice sites. As can be seen im72 0.011

Table I, our model predicts a larger Lindemann ratio than the
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FIG. 5. Weighted packing fraction us for an average reduced
solid density of 1.247, or packing fraction of 0.653. The original
MWDA model as studied in real space by Tej¢Rhys. Rev. 55,

3720 (1997] is shown as a solid line, while our formulation is
given as a dashed line.

model proposed by Rosenfeld. The weighted densities of the

two MWDA models are close to each other in value except

at high packing fractions. The weighted density computed in The difference between our formulation and the original
Rosenfeld’s model differ significantly, however, becomingMWDA model, as witnessed by the large growth in excess
extremely large at packing fractions greater than 0.6. Thigressure beginning at a packing fraction of around 0.68 in
leads to the dominance of the excess pressure over the idghke original model, can easily be explained by invoking the
pressure in that model. The weighted densities of the tw@oncept of free volume. At smaller packing fractions, the
MWDA models are equal to each other at a packing fractiorexcess pressure is negative in both models, because the in-
of 0.67, but the weighted density in the original model in-creasing localization of particles with increasing packing
creases rapidly after that, while the weighted density in thdraction actually results in more “free volume” around each
MWDA-SRS model continues its gradual decline. At largeparticle in the system, and hence greater local entropy. At
packing fractiongaround 0.7, the MWDA-SRS model lo- very high packing fractiongnear close packing this free
calizes the particles to a greater extent than the originatolume is eventually relinquished as the system becomes
MWDA model (see Fig. 2 thus a lowenweighted density  increasingly congested, resulting in a large excess pressure.
is required to model the solid as an effective liquid. As seen in Fig. 2, the MWDA-SRS formulation yields a

One problem with the original MWDA model at high more strongly localized solidarger « valug than the origi-
densities or packing fractions is the absence of a weightedal MWDA theory for packing fractions of 0.69 and greater.
density at certainy values. In addition, for certain ranges, This greater localization delays the onset of rapidly increas-
the weighted density appears to increase with increaaing ing excess pressures until higher packing fractions are at-
[8]. This unphysical behavior can be seen in Fig. 5, wherdained. This difference between the two models could ac-
the weighted packing fractiopnn=(#/6)p] is plotted as a count for a large portion of the error in the total pressure
function of « for an average solid density pio®=1.247, or  observed in Fig. (), incurred by the original MWDA model
a packing fraction of 0.653. The figure shows the resultsaibove packing fractions of 0.68.
obtained by Tejero using the real space version of the origi- The concepts of free volume and local entropy are related
nal MWDA theory[8], as well as the MWDA-SRS formu- to perhaps the most interesting and controversial aspects of
lation. The weighted density stays constant or increases witihe high-density hard-sphere solid, namely, the existence of
increasing o values for smalla values in the original negative excess pressures. Denton, Ashcroft, and Curtin ar-
MWDA model. Furthermore, no weighted density can begued that negative excess pressures at most densities found
found at all fora roughly between 70 and 85. Although the in their work, as well as in computer simulation data, imply
equilibrium solid at this density is stabilized at much higheran effectiveattraction in the hard-sphere system. Further-
a values than shown in the figure, these deficiencies of théore, this interaction in the solid is different in character
MWDA model become much more pronounced at higherthan in fluids because of the local quality of the entrppy
solid densities. For example, Tejero found that for an averOther authors guestioned the nature of this attraction—
age solid density of 1.337a packing fraction of 0)7 no  whether it is a potential of mean force or a depletion inter-
weighted density can be found fargreater than 34 and less action[4]. Perhaps it is a hybrid of both. The depletion in-
than 728[8]. We believe this is a direct consequence ofteraction can be considered a limiting case of the potential of
extrapolating fluid state data far into the ordered solid. In-mean force for different size particles. Binary hard-sphere
deed, as seen in Fig. 4, incorporating the static solid into theolloidal mixtures with very different diameter ratios under
model corrects these deficiencies and yields better overadippropriate conditions phase separate into distinct bulk
thermodynamic results. phase$21]. The classic explanation is that by phase separat-

FIG. 4. Dimensionless weighted density vs packing fraction for
the MWDA-SRS model(solid ling), the original MWDA model
(dash dotted ling and Rosenfeld'§Phys. Rev. A43, 5424(1991)]
model(dashed ling
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ing, some excluded volume is made available to the smalleonly short-range interactions are important. These relevant
particles, hence increasing the total entropy of the systerdistances of just beyond the hard-sphere diameter are where
and yielding an effective attractive interaction between largehe mean force is attractive. This attraction opposes the ideal
particles. In the case of the hard-sphere solid, however, thefigressure repulsions to prevent the loss of local free volume.
is only one component and the correlations act over a mucfyyhereas, in binary colloidal systems, different sized par-
shorter distance. In both cases, however, the driving force igcles will force phase separation into two phases, in the
a gain in excluded volume. In the colloidal system the enarqd-sphere solid individual particles will force themselves
tropy gain is global and the separation is of the bulk, with thenig 5 single ordered phase.

smaller particles forcing the larger particles to “cluster” |5 this work, we have applied our formulation of the
throughout the entire system. In the hard-sphere solid, thgnypa theory with a static reference state to the high-
entropy gain is local, with each particle influenced by only gensity hard-sphere solid. We found that the model, which
its immediate neighboring shell or “cage” of particles. In gepicted the crystallization of inversgh power fluids quite

the solid, each particle will force its neighboring partlcleswe”' also models the high-density hard-sphere solid. Perhaps
into positions(the lattice sitepthat maximize its own local  this is not surprising since in the close-packing limit the
entropy, even if this means “pulling” the n_elghbo_rlng Par- properties of the static solid become increasingly relevant.
ticles closer together than they would be in a fluid. As thengnetheless, the successes of this model indicates that it may

density increases, the neighboring particles will be requiregye generally applicable to a wide variety of problems.
to become more and more stationary or localized to avoid

excessively raising their local entropy. Given this local qual- This work was supported by the National Science Foun-
ity in the solid phase, especially in the hard-sphere systengation(Grant No. CTS-9413893
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