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Equation of state of the hard-sphere solid: The modified weighted-density approximation
with a static solid reference state

Dean C. Wang and Alice P. Gast*
Department of Chemical Engineering, Stanford University, Stanford, California 94305

~Received 10 November 1998!

We have investigated the high-density hard-sphere solid through density-functional theory by applying our
recent formulation of the modified weighted-density approximation~MWDA ! with a static solid reference
state. Our model utilizes both information about the fluid state, modeled by the Percus-Yevick approximation,
as well as physical insight into the static solid. We find very good agreement with computer simulation data for
the equation of state, as well as for the ideal and excess components of the pressure, and are able to improve
the results from the original MWDA model over a wide range of packing fractions. The degree of particle
localization and the value of the Lindemann parameter for the high-density hard-sphere solid are also improved
over the original MWDA theory. Finally, we comment on the result that the excess pressure is negative for
most packing fractions, suggesting possible physical means for this observation.@S1063-651X~99!07904-0#

PACS number~s!: 05.70.Ce, 05.20.2y
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In the 20 years since Ramakrishnan and Yussouff’s p
neering work on the applications of density functional theo
to classical systems@1#, it has been widely used to analyz
the thermodynamics of crystallization, the structure of
solid-liquid interface, the process of nucleation, the prese
of defects in a crystal@2#, and details of the hard sphere sol
@3–5#. A decade ago, Denton and Ashcroft introduced a f
mulation of density-functional theory, the modifie
weighted-density approximation~MWDA !, to study the crys-
tallization of simple fluids@6#. Four years ago, Denton, Ash
croft, and Curtin applied the MWDA to study the thermod
namic and structural properties of the high-density ha
sphere solid@3#. They obtained the equation of state for t
face-centered cubic~fcc! hard-sphere solid for packing frac
tions up to 0.71, although the results deteriorate at dens
or packing fractions near close packing.

Recently, we proposed a revised version of the MWD
theory that corrected many of the problems of the origi
theory when it was applied to the crystallization of the cla
of inversenth power fluids, where the intermolecular pote
tial is given by U54«(s/r )n @7#. The essence of our ap
proach is to incorporate physical information about the st
solid into the original density-functional theory model bas
upon the fluid state. Motivated by our belief that an accur
model of high-density solids near close packing requires
incorporation of static solid properties, we have applied
theory to the equation of state of the high-density ha
sphere solid.

The purpose of this paper is twofold. First, we show th
our approach yields highly accurate equation of state data
well as structural information in terms of localization para
eters, for the hard-sphere fcc solid at higher packing fracti
than were obtained before@3–5#. Our second aim is to dem
onstrate that our model can correct some of the proble
which have plagued the original MWDA model at densiti
higher than coexistence@8#.

*Author to whom correspondence should be addressed.
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In density-functional theory, the total Helmholtz free e
ergy is taken to be a functional of the local densityr(r ) and
is generally decomposed into ideal and excess compone

F@r#5F ideal@r#1Fexcess@r#, ~1!

where the ideal component is known exactly:

F ideal@r#5kTE dr r~r !$ ln@L3r~r !#21%, ~2!

where k is Boltzmann’s constant andL is the de Broglie
wavelength. To approximate the excess free energy in
MWDA model, Denton and Ashcroft assumed that it po
sessed the form

Fexcess@r#5N f~ r̄ ! ~3!

where N is the number of particles andf ( r̄) is the local
excess free energy of the fluid phase evaluated at a spa
invariant weighted densityr̄. This weighted, or coarse
grained, density is that of aliquid that accurately models a
solid with densityrs , and is in turn given by

r̄5
1

N E dr1r~r1!E dr2r~r2!w~r1 ,r2 ; r̄ !, ~4!

where w(r1 ,r2 ;r) is a weighting function. The weighting
function is chosen such that the free energy and the t
particle direct correlation functionc(r1 ,r2 ;r) are exact in
the uniform liquid limit via the relationship

c~r1 ,r2 ;@r#!52b
d2Fexcess@r#

dr~r1!dr~r2!
, ~5!

whereb51/kT. Thus, the MWDA model~as with almost all
density-functional theories to date! can be regarded as
fluid-based theory, with the quality of its results depend
on its ability to accurately extrapolate information about t
solid from the fluid state.
3964 ©1999 The American Physical Society
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In most density-functional theories, the solid density
given a priori by a Gaussian parametrization

r~r !5S p

a D 3/2

(
R

exp~2aur2Ri u2! ~6!

where the sum is taken over real lattice vectorsRi , depen-
dent upon the particular crystal structure, anda is an order
parameter that can range from 0 for a liquid with unifor
density to` for a static solid possessing a sum ofd-functions
density profile. Computer simulation results indicate that
Gaussian parametrization is an excellent approximation
high densities@9,10#. In Fourier space, Eq.~6! can be ex-
pressed as

r~r !5rs1(
ki

rki
exp~ ik i•r !, ~7!

where the sum is now over reciprocal lattice vectorsk i . For
the largea (as2.50) values typically found in solids, th
ideal free energy,@Eq. ~2!# can be approximated as@3#

bF ideal5
3

2
lnS a

p D13 ln~L!2
5

2
. ~8!

Combining Eqs.~4!–~7! with the application of the uni-
form liquid conditions yields a simple algebraic relationsh
for the weighted density:

r̄~rs ,a!5rsS 12
1

2b f 8~ r̄ ! (
kÞ0

exp~2k2/2a!c~k; r̄ ! D .

~9!

The two particle direct correlation function in the equati
above is generally evaluated by solving the Ornste
Zernicke equation

c~r 12!5h~r 12!2rE c~r 13!h~r 23!dr3 , ~10!

where r 125ur12r2u, with an appropriate closure relation
ship. For the hard-sphere system, analytical forms of the
rect correlation function are available via the Percus-Yev
closure, which is accurate for densities less thanrs350.7,
where s is the hard-sphere diameter. Equation~9! is then
solved iteratively and self-consistently to evaluate
weighted density.

After the weighted density is found, the excess and to
free energies can be calculated as a function of the loca
tion parametera. At each solid density, a minimum in th
total free energy curve for a nonzeroa value corresponds to
a stable solid in the MWDA theory. More detailed inform
tion about the MWDA theory, its interpretation, and its co
nection with the closely related WDA theory, can be fou
in several other papers@2–3,6–7,11#.

Originally, the MWDA theory was applied to study th
fluid-solid freezing transition. It yielded excellent results f
the hard-sphere fluid-fcc solid transition, but the resu
worsened~sometimes to the point of failure! for potentials
having longer range or attraction and for systems freez
into body-centered cubic~bcc! solids. The traditional expla
nation for these failures was that the MWDA theory inacc
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rately models the range and magnitude of correlations in
solid @2,12#. To ameliorate this shortcoming, we decided
retain the form of the weighted density given in Eq.~9!, but
to generalize the Ornstein-Zernicke equation

c~r 12!5h~r 12!2 r̂E c~r 13!h~r 23!dr3 , ~11!

where nowr̂ is a new weighted density that can vary th
strength of the correlations present in the system. It is cho
by utilizing information about the static solid~i.e., the solid
corresponding toa5`):

r̂

r̄
5

rs2 r̄`

rs2 r̄static
~12!

wherer̄static is the MWDA weighted density that would yield
a free energy equal to the exact free energy of the st
solid, andr̄` is the MWDA weighted density obtained from
the a5` limit of Eq. ~9! @7#. Thus Eq.~12! is a measure of
the relative error in the MWDA prediction of the static sol
free energy. In summary, we solve Eq.~9!, with the direct
correlation function given by Eq.~11! and r̂ given by Eq.
~12!.

In addition to free energies of the solid state, pressu
and hence equations of state, can also be obtained thro
standard thermodynamic identities:

bp

r
5br

] f

]r
. ~13!

Also, as Denton, Ashcroft, and Curtin have pointed out@3#,
the identification of ideal and excess pressures can als
made:

bpideal

r
5br

] f ideal

]r
5

3r

2a

]a

]r
, ~14a!

bpexcess

r
5br

] f excess

]r
5br

] f excess

]r̄

]r̄

]r
. ~14b!

These are the pressure analogs of the configurational~ideal!
and conformational~excess! free energies@2#.

Hard spheres are an ideal system for studying the h
density solid. From a theoretical point of view, the ha
sphere is the simplest of all systems other than the tri
ideal gas, but is known to give a qualitatively accurate p
ture of real fluids. It often serves as the reference s
around which perturbation schemes are performed. A
while many density-functional theory schemes have yield
good results for the hard-sphere solid, including at hig
densities@4,5#, that is not the case with the MWDA theory
Yet, unlike these other models, the MWDA theory has be
applied with much greater success to other systems, inc
ing soft spheres@7,12#. Thus extending the MWDA theory to
the high-density hard-sphere solid would be theoretically
pealing. Practically, simulation data are available for ha
spheres, even at high densities. Finally, the analytical s
tion of the Percus-Yevick closure to the Ornstein-Zernic
equation facilitates the computational aspects of the analy
Under the Percus-Yevick~PY! ~compressibility! approxima-
tion, the free energy is given by:
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f PY~h!5
3

2 S 1

~12h!221D2 ln~12h!, ~15!

whereh5(p/6)rs3 is the dimensionless packing fraction, while the direct correlation function is:

c~k;h!5
4p

k3 Fa~y cosy2siny!16h
b

y
~y2 cosy22y siny22 cosy12!

1
1

2
h

a

y3 ~y4 cosy24y3 siny212y2 cosy124y siny124 cosy224!G , ~16!
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where a5(112h)2/(12h)4, b52(11h/2)2/(12h)4,
andy5ks @13,14#.

Figure 1~a! shows the equation of state results deriv
from our theory via Eq.~13! compared with those of Denton
Ashcroft, and Curtin @3#, and computer simulation

FIG. 1. ~a! Total compressibility factor or dimensionless pre
sure (bp/r) vs packing fraction~h! for the MWDA-SRS model
~solid line!, the original MWDA model~dashed line!, and computer
simulation data~* !. ~b! Ideal compressibility factor (bpideal/r) vs
packing fraction~h! for the MWDA-SRS model~s!, the original
MWDA model ~1!, and computer simulation data~solid line!. Ex-
cess compressibility factor (bpexcess/r) vs packing fraction~h! for
the MWDA-SRS model~s!, the original MWDA model~* !, and
computer simulation data~solid line!.
@3,5,9,15–18#. It is remarkable that our model incorporatin
the static reference state~MWDA-SRS! agrees with com-
puter simulations for packing fractions in excess of 0.7
within 3% of the close-packing value of 0.74 for the fc
solid. At packing fractions below 0.65, the original MWDA
model gives excellent predictions, only very slightly unde
estimating the total pressure. Above a packing fraction
0.65, the MWDA theory overpredicts the total pressure, w
the discrepancy becoming significant above 0.68~within
about 10% of close packing!. It should be noted that while
our pressure results are better than those of the orig
MWDA model for the high-density hard-sphere solid, o
MWDA-SRS formulation slightly worsens the coexistin
densities at equilibrium for the hard sphere fluid fcc so
phase transition, as discussed in Ref.@7#.

Parametrizing the free energies with a cubic polynom
and applying Eq.~14!, we determined the components of th
pressure~we also checked that the two components summ
to the total pressure within a small margin of error!. Figure
1~b! shows the ideal and excess pressures from the MWD
SRS model, the original MWDA model, and computer sim
lation data. As with the original MWDA theory, our formu
lation yields ideal and excess pressures in good agreem
with computer simulation results at low to moderate pack
fractions. Also in agreement with Denton, Ashcroft, and C
tin are the observations that the ideal pressure far exceed
excess pressure at most densities and the existence ofnega-
tive excess pressures. This contrasts with a recent model
posed by Rosenfeld, where the excess pressure make
dominant~and always positive! contribution to the total pres
sure @19#. However, the MWDA-SRS model produces f
lower excess pressures at high packing fractions than fo
in the original MWDA study@3#. On the other hand, ou
results for the excess and ideal pressures are in gen
agreement with those of Tejero, Ripoll, and Perez, who
lized real space versions of density-functional theory
study the hard-sphere solid@4#, as well as Rascon, Medero
and Navascues, who studied the Tarazona free energy f
tional approach with a parametrization of the pair correlat
function obtained from Monte Carlo simulations@5#.

To study the differences between our model, the origi
MWDA model, and computer simulation results in grea
detail, we analyzed the localization of particles through
parametera for the solid phase at various packing fraction
In Fig. 2 we plot ln(as2) as a function of packing fraction fo
the three approaches. At packing fractions below 0.65,
original MWDA model overpredicts the value ofa, resulting
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in slightly smaller ideal and total pressures via Eq.~14a!
compared with computer simulations and this study.
higher packing fractions, the overprediction of theexcessand
total pressures by the MWDA theory compared with co
puter simulations could be caused at least in part by its
derprediction ofa values, as discussed below. Our mod
indicates highera values for the hard sphere solids at hi
packing fractions~aboveh50.69) compared with the origi
nal MWDA theory. The value ofa should diverge tò at the
close-packing fraction of 0.74, as the particles in the sys
become perfectly localized; at a packing fraction of 0.72,
model already predicts a very large value ofa in excess of
12 000.

In order to determine the close-packing limit predicted
the MWDA-SRS model, we compared it to the free volum
theory, a model that is accurate for high packing fractio
@3#. According to this theory, the pressure is given by

bp

r
5

1

12S h

hcp
D 1/3, ~17!

and diverges at close packing,hcp. As shown in Fig. 3, a
value of hcp50.742 yields similar pressure divergence b
haviors for both the MWDA-SRS and free volume models
h/hcp approaches unity. This predicted value of close pa
ing is virtually exact for the fcc solid.

Table I lists the values of the Lindemann parameter
quantify the localization of particles in the solid phase. T
Lindemann parameter is defined as the ratio of the m
square displacement of a particle from its lattice site to
average intermolecular spacing in the solid@20#. For a fcc
solid with a Gaussian density profile of Eqs.~6! and~7!, it is
given by

L[
^r 2&1/2

d
5S 3

as2D 1/2S 3h

2p D 1/3

, ~18!

whered is the average interparticle spacing as measured
tween two nearest-neighbor lattice sites. As can be see
Table I, our model predicts a larger Lindemann ratio than

FIG. 2. ln(as2) vs packing fraction~h! for the MWDA-SRS
model ~1!, the original MWDA model~s!, and computer simula-
tion data~* !.
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original MWDA formulation at low packing fractions, but
smaller Lindemann value at high packing fractions as a
rect consequence of the variation ofa values with packing
fraction.

For the equilibrium solid with a packing fraction of 0.54
(rs351.04), our model predicts a Lindemann value of 0.1
very close to the computer simulation value. It is well know
that the original MWDA theory, as with most density
functional theories, underpredicts Lindemann parameter
ues for various equilibrium solids with different intermolec
lar potentials. It should also be noted that below a pack
fraction of approximately 0.52, the hard-sphere solid b
comes unstable relative to the fluid. At this packing fractio
we find a Lindemann ratio of slightly over 0.13, in reaso
able agreement with the phenomenological Lindemann
stating that the fluid-solid phase transition occurs when
ratio reaches 0.15. For a metastable solid with a pack
fraction of between 0.48 and 0.52, our model indicates t
the mean square displacement is roughly 15–20 % of
average lattice spacing.

In Fig. 4 we plot the dimensionless weighted density fro
the MWDA-SRS model, the original MWDA model, and th

FIG. 3. bp/r vs h/hcp for the free volume model~solid line!
and the MWDA-SRS model~s!.

TABLE I. Lindemann ratio for the MWDA-SRS model and th
original MWDA model at various packing fractions~h!.

h L ~MWDA static reference! L ~MWDA original!

0.48 0.19 0.14
0.50 0.15 0.13
0.52 0.13 0.11
0.54 0.12 0.10
0.56 0.11 0.089
0.58 0.090 0.079
0.60 0.074 0.069
0.62 0.063 0.059
0.64 0.051 0.049
0.66 0.041 0.040
0.68 0.030 0.031
0.70 0.021 0.023
0.72 0.011
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model proposed by Rosenfeld. The weighted densities of
two MWDA models are close to each other in value exc
at high packing fractions. The weighted density computed
Rosenfeld’s model differ significantly, however, becomi
extremely large at packing fractions greater than 0.6. T
leads to the dominance of the excess pressure over the
pressure in that model. The weighted densities of the
MWDA models are equal to each other at a packing fract
of 0.67, but the weighted density in the original model
creases rapidly after that, while the weighted density in
MWDA-SRS model continues its gradual decline. At lar
packing fractions~around 0.7!, the MWDA-SRS model lo-
calizes the particles to a greater extent than the orig
MWDA model ~see Fig. 2!; thus a lower~weighted! density
is required to model the solid as an effective liquid.

One problem with the original MWDA model at hig
densities or packing fractions is the absence of a weigh
density at certaina values. In addition, for certaina ranges,
the weighted density appears to increase with increasina
@8#. This unphysical behavior can be seen in Fig. 5, wh
the weighted packing fraction@h̄5(p/6)r̄ # is plotted as a
function ofa for an average solid density ofrs351.247, or
a packing fraction of 0.653. The figure shows the resu
obtained by Tejero using the real space version of the or
nal MWDA theory @8#, as well as the MWDA-SRS formu
lation. The weighted density stays constant or increases
increasing a values for smalla values in the original
MWDA model. Furthermore, no weighted density can
found at all fora roughly between 70 and 85. Although th
equilibrium solid at this density is stabilized at much high
a values than shown in the figure, these deficiencies of
MWDA model become much more pronounced at high
solid densities. For example, Tejero found that for an av
age solid density of 1.337~a packing fraction of 0.7!, no
weighted density can be found fora greater than 34 and les
than 728@8#. We believe this is a direct consequence
extrapolating fluid state data far into the ordered solid.
deed, as seen in Fig. 4, incorporating the static solid into
model corrects these deficiencies and yields better ove
thermodynamic results.

FIG. 4. Dimensionless weighted density vs packing fraction
the MWDA-SRS model~solid line!, the original MWDA model
~dash dotted line!, and Rosenfeld’s@Phys. Rev. A43, 5424~1991!#
model ~dashed line!.
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The difference between our formulation and the origin
MWDA model, as witnessed by the large growth in exce
pressure beginning at a packing fraction of around 0.68
the original model, can easily be explained by invoking t
concept of free volume. At smaller packing fractions, t
excess pressure is negative in both models, because th
creasing localization of particles with increasing packi
fraction actually results in more ‘‘free volume’’ around eac
particle in the system, and hence greater local entropy.
very high packing fractions~near close packing!, this free
volume is eventually relinquished as the system becom
increasingly congested, resulting in a large excess press
As seen in Fig. 2, the MWDA-SRS formulation yields
more strongly localized solid~largera value! than the origi-
nal MWDA theory for packing fractions of 0.69 and greate
This greater localization delays the onset of rapidly incre
ing excess pressures until higher packing fractions are
tained. This difference between the two models could
count for a large portion of the error in the total pressu
observed in Fig. 1~a!, incurred by the original MWDA model
above packing fractions of 0.68.

The concepts of free volume and local entropy are rela
to perhaps the most interesting and controversial aspec
the high-density hard-sphere solid, namely, the existenc
negative excess pressures. Denton, Ashcroft, and Curtin
gued that negative excess pressures at most densities f
in their work, as well as in computer simulation data, imp
an effectiveattraction in the hard-sphere system. Furth
more, this interaction in the solid is different in charact
than in fluids because of the local quality of the entropy@3#.
Other authors questioned the nature of this attractio
whether it is a potential of mean force or a depletion int
action @4#. Perhaps it is a hybrid of both. The depletion i
teraction can be considered a limiting case of the potentia
mean force for different size particles. Binary hard-sph
colloidal mixtures with very different diameter ratios und
appropriate conditions phase separate into distinct b
phases@21#. The classic explanation is that by phase sepa

r
FIG. 5. Weighted packing fraction vsa for an average reduced

solid density of 1.247, or packing fraction of 0.653. The origin
MWDA model as studied in real space by Tejero@Phys. Rev. E55,
3720 ~1997!# is shown as a solid line, while our formulation i
given as a dashed line.
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ing, some excluded volume is made available to the sma
particles, hence increasing the total entropy of the sys
and yielding an effective attractive interaction between la
particles. In the case of the hard-sphere solid, however, t
is only one component and the correlations act over a m
shorter distance. In both cases, however, the driving forc
a gain in excluded volume. In the colloidal system the e
tropy gain is global and the separation is of the bulk, with
smaller particles forcing the larger particles to ‘‘cluste
throughout the entire system. In the hard-sphere solid,
entropy gain is local, with each particle influenced by on
its immediate neighboring shell or ‘‘cage’’ of particles. I
the solid, each particle will force its neighboring particl
into positions~the lattice sites! that maximize its own loca
entropy, even if this means ‘‘pulling’’ the neighboring pa
ticles closer together than they would be in a fluid. As t
density increases, the neighboring particles will be requi
to become more and more stationary or localized to av
excessively raising their local entropy. Given this local qu
ity in the solid phase, especially in the hard-sphere syst
y

s
m
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m
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re
h
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e

e

e
d
id
-

,

only short-range interactions are important. These relev
distances of just beyond the hard-sphere diameter are w
the mean force is attractive. This attraction opposes the id
pressure repulsions to prevent the loss of local free volu
Whereas, in binary colloidal systems, different sized p
ticles will force phase separation into two phases, in
hard-sphere solid individual particles will force themselv
into a single ordered phase.

In this work, we have applied our formulation of th
MWDA theory with a static reference state to the hig
density hard-sphere solid. We found that the model, wh
depicted the crystallization of inversenth power fluids quite
well, also models the high-density hard-sphere solid. Perh
this is not surprising since in the close-packing limit t
properties of the static solid become increasingly releva
Nonetheless, the successes of this model indicates that it
be generally applicable to a wide variety of problems.

This work was supported by the National Science Fo
dation ~Grant No. CTS-9413883!.
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